Multi-Circuit Submetering: A Cost-Effective Solution for Electrical Load Profiling of Hospital Emergency Power Supply System Loads

By: Zack Smith & Allan Evora, Affinity Energy

ATS MULTI-CIRCUIT METERING HELPS EFFECTIVELY MANAGE LOAD CREEP

Emergency Power Supply Systems (EPSS) are the critical infrastructure that supports a hospital system during power outages. Regulations place a lot of emphasis on testing and maintenance of the EPSS system; however, all the maintenance in the world will do no good if the EPSS becomes overloaded.

EPSS experience load creep like normal power systems. Additionally, they run the risk of reduced capacity due to the addition of non-essential loads plugged in to designated red receptacles during extended outages. These loads may consist of diagnostic equipment or in some cases “comfort equipment” such as microwaves, heaters or coffee pots. Education and training can help ensure only approved loads are plugged in to EPSS.

Submetering is the only way to truly manage load creep and prevent EPSS overload.

YOU CAN’T MANAGE WHAT YOU DON’T MEASURE

The best way to manage your capacity is to submeter your loads. For some hospitals, this is easier said than done. While you may have submetering information at the generator switchgear or even downstream submetering at EPSS distribution switchgear, the ideal location to submeter for managing load creep is the load side of the automatic transfer switch (ATS).

Newer ATSs (installed within the last 10 years) either have digital controllers that incorporate submetering as an option, or engineers had the foresight to specify that OEMs install a separate third party submeter with the ATS. Unfortunately, older ATSs need to retrofit submeters to be able to measure the ATS load. This can be a costly proposition when considering hardware and installation costs. The combination of OSHA regulations, and the fact that the ATS is part of critical infrastructure, can make modifying equipment challenging.

A COST-EFFECTIVE ALTERNATIVE TO CONVENTIONAL CIRCUIT MONITORING

Within the last five years, a new type of electrical submeter has emerged and is an ideal solution for retrofitting ATSs with submetering capability. This meter type is referred to as the multi-circuit or multiple circuit meter. The concept is simple: Use one submeter CPU/circuit board to measure multiple loads.

A multi-circuit meter has only one set of inputs for a common voltage source, and multiple sets of current inputs for loads that share the common voltage source. Due to limitations on current transformer (CT: the instrument that provides current input to the meter) lead wire length, the multi-circuit meter is best suited for loads in which the CT installation locations for the loads are near one another (typically within 100 ft.).

Examples include: submetering all the circuits within a distribution panel, or all the distribution panels within an electric room, or feeder breakers on a unit substation. Since ATSs tend to be concentrated in electric rooms and typically share a common normal and emergency voltage source, they are great candidates for multi-circuit submeters.

What makes multi-circuit submetering so cost effective? The lower hardware and installation costs. Additionally, since there is only one CPU/circuit board, there is only one low-voltage communication connection.

Our general rule of thumb: whenever you have more than two loads to submeter that meet the criteria for multi-circuit metering, go with multi-circuit metering. Its costs will be lower when compared to individual meters.

MULTI-CIRCUIT SUBMETER HARDWARE

The DENT Instruments PowerScout 24 is a great example of an inexpensive yet accurate submeter that provides all the measurements necessary for monitoring ATS loads. DENT Instruments was one of the first companies to introduce the multi-circuit design.

The PowerScout 24 comes with its own enclosure, is powered via the voltage source and easily integrates to your SCADA or building automation system via Modbus or BACNet. It can measure up to 8 3-phase loads. List price for a PowerScout 24 with serial communication is $1,200. A DENT PowerScout 3037 (the single circuit meter version) is $400.

Taking in to account installation costs, it is easy to see how the multi-circuit meter is a cost-effective solution when you need to meter more than two loads that meet the multi-circuit criteria. The cost savings are even more substantial as the number of loads increases. A fully provisioned PowerScout 24 will have approximately 66% lower hardware costs when compared to individual meters. Taking in to account labor savings, the total costs savings can be as much as 80-90%.

TURN THAT DATA INTO INFORMATION

Submeters provide data. To make this data valuable, it needs to be turned into actionable information. To accomplish this, we recommend a few additional steps.

First, we recommend that submeter data be recorded. To be of benefit, the load profiles need to be analyzed over time using trending software within your SCADA or building automation system. If you don’t have an existing system, there are some very cost effective data logging devices that can store a large amount of interval data. This data can generally be exported and analyzed with a desktop application such as Microsoft Excel. We also recommend that the ATS switch position and generator run status also be recorded.

Using this information, it would be easy to analyze the data to check the load prior to the ATS switching to emergency, the load while on emergency, and the load after the ATS returns to the normal source. Using this analysis, it’s easy to identify loads added during a power outage and not removed when normal power is restored.

Another easy way to spot load creep is to trend year over year load growth. Using this analysis technique, load creep is easy to quantify.

Ultimately, multi-circuit submeters are an easily installed, inexpensive way for healthcare facility managers to conduct accurate load profiling and analysis.

ABOUT AFFINITY ENERGY

Affinity Energy is a vendor-neutral control systems integrator with a national portfolio of over 800 power automation projects and a rich depth of expertise working with mission critical facilities, distributed generation plants, energy companies, engineering firms, and construction contractors who seek open, turnkey systems for power management and energy optimization.

Specifically, they work to design, build, implement, and support controls, instrumentation, and monitoring systems, during the design and/or build phases of a new construction or retrofit project for utility-scale solar farms, airports, waste-to-energy plants, data centers, medical campus central energy plants, and manufacturing companies.

See the original post on the Affinity Energy website here.

NIST Teams Up with Sparks Dynamics to Drive Down Energy Costs

CUSTOMER PROFILE

Founded in 1901 and now part of the U.S. Department of Commerce, NIST is one of the nation’s oldest physical science laboratories. Congress established the agency to remove a major handicap to U.S. industrial competitiveness at the time—a second-rate measurement infrastructure that lagged behind the capabilities of the United Kingdom, Germany, and other economic rivals. Today, NIST measurements support the smallest of technologies—nanoscale devices so tiny that tens of thousands can fit on the end of a single human hair—to the largest and most complex of human-made creations, from earthquake-resistant skyscrapers to wide-body jetliners to global communication networks.

THE CHALLENGE

Faced with an antiquated, inefficient compressed air system and the challenge of fully benchmarking the existing system performance, NIST knew they needed a professional energy ally so they could focus on what they do best—technology and standards development.

THE SOLUTION

NIST chose to work with Sparks Dynamics, who had the latest cloud monitoring technology and industry expertise to design, develop, operate and maintain the central compressed air plant serving the NIST campus. A month’s worth of compressed air system operating data was baselined using the ReMaster system and then a new compressed air system was designed and engineered to maximize energy efficiency and provide enhanced reliability for the plant.

The ReMaster system offers industrial customers a way to capture and analyze their system’s data. ReMaster uses Modbus communication and can collect data on energy, flow, pressure, and temprature, as well as control panel data. Energy data is captured using the PowerScout 24 Power Meter, which is built into the ReMaster system.

“Sparks Dynamics selected the PowerScout 24 for its ReMaster Cloud Monitoring Energy Management system for several reasons. We needed a cost-effective, multi-channel meter that was Modbus-capable and could handle 480V, 3-phase motors on compressors, chillers, pumps, blowers, and vacuum pumps,” says Mac Mottley, CEO of Sparks Dynamics. “The PowerScout 24 can monitor eight 3-phase motors for kW, Volts, Amps, and Power Factor and had a small form factor PCB design that could be easily mounted inside our ReMaster Panel.”

Sparks Dynamics managed the entire project and completed an energy study that resulted in a large Pepco (utility) rebate. The central compressed air plant was also designed with expansion in mind—33% more capacity to be exact, making it possible for NIST to supply compressed air to more laboratories as they are built and come online.

THE RESULTS

The new state of the art compressed air plant system was completed on time and on budget. In addition, Sparks Dynamics’ seamless integration and collaboration with the NIST’s contractors throughout the process helped ensure the project’s success – as the campus had to maintain compressed air service throughout the installation. As a result, Sparks Dynamics role has been expanded to include a remote monitoring contract utilizing the ReMaster cloud based monitoring and analytics solution.

WIN-WIN FINANCIAL FORMULA

Sparks Dynamics funded this project through two separate sources to ensure a totally complete system was provided. The first was using the standard government procurement RFQ process and the second was a Pepco rebate that paid for half of the total compressed air system equipment costs.

BENEFIT BREAKDOWN

  • 1,000 CFM of additional compressed air
  • Energy cost savings of $140,000 achieved per year
  • Received $370,000 Pepco Energy Rebate
  • Less than a 4-year simple payback

ABOUT SPARKS DYNAMICS

Sparks Dynamics is a compressed air management company that provides audits, remote monitoring and analytics services that notify and recommend corrective actions, enhanced control algorithms, equipment sourcing and energy financing.

Learn more at http://www.sparksdynamics.com/

Energy Management Case Study: Retro-Commissioning Service Cuts Energy Use

Two prominent grocery chains in the Upper Midwest are reducing their energy use and cutting energy cost by retro-commissioning their stores. The chains have done so with the help of SINGH360, a service provider that specializes in working with grocery chains, and the PowerScout 24 power meter.

The retro-commissioning process identifies opportunities to improve energy efficiency for stores that have been in operation for several years. The process is valuable because such stores tend to become less energy efficient with time, says Abtar Singh, president of SINGH360.

Strack and Van Til, a 37-store chain in Indiana and Illinois, recently hired SINGH360 to retro-commission 16 locations. As part of that process, the company upgraded system controllers to the latest software version. They put the energy-management system (or EMS) for each store on a network so that they can check and manage them remotely. They also implemented a system to control store lighting on an Energy Management System.

“In the last four months we’ve seen savings of 8% to 12% on average,” says Don Erminger, director of energy and maintenance. “Before the project, we expected a payback of two years. But after our first four months, we now think we’ll achieve full payback in 12 to 14 months. That’s twice as fast as we first projected, thanks to opportunities SINGH360 identified.”

Coborn’s, a 54-store chain headquartered in St. Cloud, Minnesota and operating in six states across the Midwest, recently retro-commissioned its first store. In addition to reducing energy costs and improving environmental sustainability, the company also benefited from addressing many maintenance issues, says Chris Braun, refrigeration project manager.

With the opportunities SINGH360 identified, plus a 75% utility incentive from Dakota Electric, the company expects payback in less than six months, Braun says. The project also identified added capital projects that could cut the company’s energy use by 20% to 25% during retro-commissioning, he says.

Such utility rebates often make retro-commissioning even more attractive.

Xcel Energy (http://www.xcelenergy.com/), an electric and natural gas utility that serves customers in eight states, provides attractive incentives for its customers. “Recommissioning can be a good way for supermarkets to save energy,” said Renae Wrich, Xcel Energy recommissioning program manager in Minnesota. “As an incentive for supermarkets to take action, we offer rebates to subsidize the cost of identifying and implementing energy-saving HVAC and refrigeration projects,” She said. Xcel offers recommissioning rebates in Colorado and Minnesota.

SINGH360’s retro-commissioning process is especially tailored to the needs of supermarkets, says Abtar Singh, president.

“We always involve a three-person team. They include a commissioning engineer, a refrigeration technician, and an electrician. They use a mobile app we developed to make the process thorough and consistent.

A DENT PowerScout 24 was used to submeter the mains, lighting, HVAC, refrigeration compressors, and condensers. The submetered data helped in three ways during the retro-commissioning:

  1. To quantify energy savings achieved during retro-commissioning
  2. To identify anomalies and help determine that lighting and HVAC were operating on the proper schedule
  3. To find optimum operating control parameters for the refrigeration system using the metered data

“The building owner uses that same data to protect their savings by continuous monitoring,” says Singh. “We selected the PowerScout because it provides easy installation and provides a rich set of data, such as voltage, current, and power factor.”

Each store takes about three weeks to recommission, Singh says. “First we dial in remotely to analyze the store’s energy management system (EMS). We prepare a game plan. Then our team spends a week in the store diagnosing and fixing problems. While we’re on site, we also fine-tune the EMS.”

“Then we further adjust the EMS remotely and monitor its performance to verify the changes are producing their intended effects,” Singh says.

“We create an issue list so the store owner can hire a refrigeration contractor to fix any problems that go beyond the solutions we provide. We also identify additional energy projects and initiatives that can further reduce energy consumption.

“Finally, we issue a commissioning report. The report summarizes the work we’ve done. It identifies and recommends new opportunities for savings. And it forecasts likely savings from the recommended projects.”

About SINGH360 Inc.

SINGH360 (www.singh360.com) specializes in facility management. The principals have worked with the supermarket industry for 20 years, providing objective counsel that helps operators find and implement the best solutions to energy and maintenance challenges. The company’s solutions often incorporate the latest technologies. Services range from building-envelope assessments to complete design of mechanical and electrical systems (including HVAC, lighting and refrigeration systems) for new and existing buildings. The company help organizations set priorities for efficiency projects based on sustainability goals, speed of payback, and the return on investment. For more information, contact Abtar Singh, abtar@singh360.com or 651-605-1093.

Stop Overpaying the Power Company: Energy Audits are Key to Savings

Most companies want to decrease their energy consumption, either for financial reasons, or to be active in reducing their carbon footprint, or both–but some of them aren’t sure where to begin. When the only measure of a facility’s energy usage is the bill customers receive at the end of the month, they may feel their facility is more like the proverbial black hole: power goes in, business happens inside, but it’s not clear exactly how much energy is used where and when. Factory owners may want to know where the heavy usage is inside their plant–how much consumption is used to operate compressors, chillers, pumps, lighting, etc. Office building owners may want to break out the energy consumed in their HVAC vs. lighting systems.

To get an accurate breakdown of energy consumption, a common method is to conduct a short-term energy audit. In an audit, monitoring devices are installed for a period of time to measure all the circuits that are responsible for the overall energy usage of the facility. The resulting data are recorded, demonstrating what areas are consuming the most power. By comparing the consumption of these with industry averages, it’s possible to identify areas where energy can be saved. For example, lighting energy usage that is higher than typical for a business of its size could mean that the facility has unnecessarily high illumination levels or lights in use when not necessary.

When starting an audit, there are many areas of a building that need to be investigated for potential savings. A good building energy audit will indicate how to reduce your energy costs by 10% to 40%, depending on the building. Energy audits typically focus on the following areas within a facility:

  • Lighting Systems
  • HVAC Systems and Controls
  • Compressed Air Systems
  • Renewable Energy Applications
  • Electric Motors and Drives
  • Process Systems
  • Steam Systems
  • Heat Recovery
  • Building Envelope Upgrades

A variety of tools are part of every energy auditor’s toolkit. These items may include an infrared camera, digital pressure and flow gauges, a gas leak detector, a carbon monoxide detector, a combustion analyzer, a moisture meter, and others.

But to determine if there has been a reduction in energy consumption, a recording power meter is also required. For example, the DENT ELITEpro XC, can capture kWh/kW energy and demand data as well as many other relevant energy parameters for diagnostics and monitoring on three-phase or single phase systems. The ELITEpro XC is also ideal for capturing baseline energy consumption before any changes are made to an energy program. This baseline information is crucial in determining the success of any program.

In many cases, a load study can last for a month or more. If a recording power meter is not already part of your toolkit, or if the study is a one-time event, the smart choice may be to rent this equipment instead of purchasing.

DENT Instruments has a network of authorized distributors around the United States, some of which provide equipment rentals. If your next project is short term, give the distributor in your area a call for rental pricing. In addition to the equipment, they are a fantastic resource for advice on how to get started with your measurement project.

HERE ARE THE DENT AUTHORIZED DISTRIBUTORS WHO RENT EQUIPMENT:

        HANOVER TECHNICAL SALESMain Office: Virginia800-304-9043sales@hanovertechnical.comWebsite: http://hanovertechnical.com/
     PANEL COMPONENTS & SYSTEMS (PC&S)Main Office: New Jersey800-523-9194Bill Renshaw (ext 19): bill@pc-s.comRon Aloisio: raloisio@pc-s.comWebsite: http://www.pc-s.com/
 LAKELAND ENGINEERINGOffice Locations: Minneapolis (HQ), Denver, Kansas City, Omaha1-855-544-0321meck@lakelandengineering.comrkucksdorf@lakelandengineering.comWebsite: https://shop.lakelandengineering.com/brands/dent-instruments
 PQ TESTING & RENTALSMain Office: Florida407-421-0846pqtesting@yahoo.comWebsite: http://www.pqtesting.com/